
NAG C Library Function Document

nag_zhbgst (f08usc)

1 Purpose

nag_zhbgst (f08usc) reduces a complex Hermitian-definite generalized eigenproblem Az ¼ �Bz to the
standard form Cy ¼ �y, where A and B are band matrices, A is a complex Hermitian matrix, and B has
been factorized by nag_zpbstf (f08utc).

2 Specification

void nag_zhbgst (Nag_OrderType order, Nag_VectType vect, Nag_UploType uplo,
Integer n, Integer ka, Integer kb, Complex ab[], Integer pdab,
const Complex bb[], Integer pdbb, Complex x[], Integer pdx, NagError *fail)

3 Description

To reduce the complex Hermitian-definite generalized eigenproblem Az ¼ �Bz to the standard form
Cy ¼ �y, where A, B and C are banded, this function must be preceded by a call to nag_zpbstf (f08utc)

which computes the split Cholesky factorization of the positive-definite matrix B: B ¼ SHS. The split
Cholesky factorization, compared with the ordinary Cholesky factorization, allows the work to be
approximately halved.

This function overwrites A with C ¼ XHAX, where X ¼ S�1Q and Q is a unitary matrix chosen
(implicitly) to preserve the bandwidth of A. The function also has an option to allow the accumulation of
X, and then, if z is an eigenvector of C, Xz is an eigenvector of the original system.

4 References

Crawford C R (1973) Reduction of a band-symmetric generalized eigenvalue problem Comm. ACM 16
41–44

Kaufman L (1984) Banded eigenvalue solvers on vector machines ACM Trans. Math. Software 10 73–86

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: vect – Nag_VectType Input

On entry: indicates whether X is to be returned as follows:

if vect ¼ Nag DoNotForm, X is not returned;

if vect ¼ Nag FormX, X is returned.

Constraint: vect ¼ Nag DoNotForm or Nag FormX.

3: uplo – Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored as follows:

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08usc

[NP3645/7] f08usc.1

if uplo ¼ Nag Upper, the upper triangular part of A is stored;

if uplo ¼ Nag Lower, the lower triangular part of A is stored.

Constraint: uplo ¼ Nag Upper or Nag Lower.

4: n – Integer Input

On entry: n, the order of the matrices A and B.

Constraint: n � 0.

5: ka – Integer Input

On entry: kA, the number of super-diagonals of the matrix A if uplo ¼ Nag Upper, or the number
of sub-diagonals if uplo ¼ Nag Lower.

Constraint: ka � 0.

6: kb – Integer Input

On entry: kB, the number of super-diagonals of the matrix B if uplo ¼ Nag Upper, or the number
of sub-diagonals if uplo ¼ Nag Lower.

Constraint: ka � kb � 0.

7: ab½dim� – Complex Input/Output

Note: the dimension, dim, of the array ab must be at least maxð1; pdab� nÞ.
On entry: the n by n Hermitian band matrix A. This is stored as a notional two-dimensional array
with row elements or column elements stored contiguously. The storage of elements aij depends on

the order and uplo parameters as follows:

if order ¼ Nag ColMajor and uplo ¼ Nag Upper,
aij is stored in ab½kA þ i� jþ ðj� 1Þ � pdab�, for i ¼ 1; . . . ; n and

j ¼ i; . . . ;minðn; iþ kAÞ;
if order ¼ Nag ColMajor and uplo ¼ Nag Lower,

aij is stored in ab½i� jþ ðj� 1Þ � pdab�, for i ¼ 1; . . . ; n and

j ¼ maxð1; i� kAÞ; . . . ; i;
if order ¼ Nag RowMajor and uplo ¼ Nag Upper,

aij is stored in ab½j� iþ ði� 1Þ � pdab�, for i ¼ 1; . . . ; n and

j ¼ i; . . . ;minðn; iþ kAÞ;
if order ¼ Nag RowMajor and uplo ¼ Nag Lower,

aij is stored in ab½kA þ j� iþ ði� 1Þ � pdab�, for i ¼ 1; . . . ; n and

j ¼ maxð1; i� kAÞ; . . . ; i.
On exit: the upper or lower triangle of A is overwritten by the corresponding upper or lower triangle
of C as specified by uplo.

8: pdab – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array ab.

Constraint: pdab � kaþ 1.

9: bb½dim� – const Complex Input

Note: the dimension, dim, of the array bb must be at least maxð1; pdbb� nÞ.
On entry: the banded split Cholesky factor of B as specified by uplo, n and kb and returned by
nag_zpbstf (f08utc).

f08usc NAG C Library Manual

f08usc.2 [NP3645/7]

10: pdbb – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix in the array bb.

Constraint: pdbb � kbþ 1.

11: x½dim� – Complex Output

Note: the dimension, dim, of the array x must be at least

maxð1; pdx� nÞ when vect ¼ Nag FormX;

1 when vect ¼ Nag DoNotForm.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix X is stored in x½ðj� 1Þ � pdxþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix X is stored in x½ði� 1Þ � pdxþ j� 1�.

On exit: the n by n matrix X ¼ S�1Q, if vect ¼ Nag FormX.

x is not referenced if vect ¼ Nag DoNotForm.

12: pdx – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array x.

Constraints:

if vect ¼ Nag FormX, pdx � maxð1;nÞ;
if vect ¼ Nag DoNotForm, pdx � 1.

13: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

On entry, ka = hvaluei.
Constraint: ka � 0.

On entry, pdab ¼ hvaluei.
Constraint: pdab > 0.

On entry, pdbb ¼ hvaluei.
Constraint: pdbb > 0.

On entry, pdx ¼ hvaluei.
Constraint: pdx > 0.

NE_INT_2

On entry, ka = hvaluei, kb = hvaluei.
Constraint: ka � kb � 0.

On entry, pdab ¼ hvaluei, ka ¼ hvaluei.
Constraint: pdab � kaþ 1.

On entry, pdbb ¼ hvaluei, kb ¼ hvaluei.
Constraint: pdbb � kbþ 1.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08usc

[NP3645/7] f08usc.3

NE_ENUM_INT_2

On entry, vect ¼ hvaluei, n ¼ hvaluei, pdx ¼ hvaluei.
Constraint: if vect ¼ Nag FormX, pdx � maxð1;nÞ;
if vect ¼ Nag DoNotForm, pdx � 1.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

Forming the reduced matrix C is a stable procedure. However it involves implicit multiplication by B�1.
When the function is used as a step in the computation of eigenvalues and eigenvectors of the original
problem, there may be a significant loss of accuracy if B is ill-conditioned with respect to inversion.

8 Further Comments

The total number of real floating-point operations is approximately 20n2kB, when

vect ¼ Nag DoNotForm, assuming n � kA; kB; there are an additional 5n3ðkB=kAÞ operations when
vect ¼ Nag FormX.

The real analogue of this function is nag_dsbgst (f08uec).

9 Example

To compute all the eigenvalues of Az ¼ �Bz, where

A ¼

�1:13þ 0:00i 1:94� 2:10i �1:40þ 0:25i 0:00þ 0:00i
1:94þ 2:10i �1:91þ 0:00i �0:82� 0:89i �0:67þ 0:34i

�1:40� 0:25i �0:82þ 0:89i �1:87þ 0:00i �1:10� 0:16i
0:00þ 0:00i �0:67� 0:34i �1:10þ 0:16i 0:50þ 0:00i

1
CCA

0
BB@

and

B ¼

9:89þ 0:00i 1:08� 1:73i 0:00þ 0:00i 0:00þ 0:00i
1:08þ 1:73i 1:69þ 0:00i �0:04þ 0:29i 0:00þ 0:00i
0:00þ 0:00i �0:04� 0:29i 2:65þ 0:00i �0:33þ 2:24i
0:00þ 0:00i 0:00þ 0:00i �0:33� 2:24i 2:17þ 0:00i

1
CCA

0
BB@ :

Here A is Hermitian, B is Hermitian positive-definite, and A and B are treated as band matrices. B must
first be factorized by nag_zpbstf (f08utc). The program calls nag_zhbgst (f08usc) to reduce the problem to
the standard form Cy ¼ �y, then nag_zhbtrd (f08hsc) to reduce C to tridiagonal form, and nag_dsterf
(f08jfc) to compute the eigenvalues.

9.1 Program Text

/* nag_zhbgst (f08usc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

f08usc NAG C Library Manual

f08usc.4 [NP3645/7]

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>

int main(void)
{

/* Scalars */
Integer i, j, k1, k2, ka, kb, n, pdab, pdbb, pdx, d_len, e_len;
Integer exit_status=0;
NagError fail;
Nag_UploType uplo;
Nag_OrderType order;
/* Arrays */
char uplo_char[2];
Complex *ab=0, *bb=0, *x=0;
double *d=0, *e=0;

#ifdef NAG_COLUMN_MAJOR
#define AB_UPPER(I,J) ab[(J-1)*pdab + k1 + I - J - 1]
#define AB_LOWER(I,J) ab[(J-1)*pdab + I - J]
#define BB_UPPER(I,J) bb[(J-1)*pdbb + k2 + I - J - 1]
#define BB_LOWER(I,J) bb[(J-1)*pdbb + I - J]

order = Nag_ColMajor;
#else
#define AB_UPPER(I,J) ab[(I-1)*pdab + J - I]
#define AB_LOWER(I,J) ab[(I-1)*pdab + k1 + J - I - 1]
#define BB_UPPER(I,J) bb[(I-1)*pdbb + J - I]
#define BB_LOWER(I,J) bb[(I-1)*pdbb + k2 + J - I - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f08usc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%ld%ld%*[^\n] ", &n, &ka, &kb);
pdab = ka + 1;
pdbb = kb + 1;
pdx = n;
d_len = n;
e_len = n-1;

/* Allocate memory */
if (!(ab = NAG_ALLOC(pdab * n, Complex)) ||

!(bb = NAG_ALLOC(pdbb * n, Complex)) ||
!(d = NAG_ALLOC(d_len, double)) ||
!(e = NAG_ALLOC(e_len, double)) ||
!(x = NAG_ALLOC(n * n, Complex)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}
/* Read whether Upper or Lower part of A is stored */
Vscanf(" ’ %1s ’%*[^\n] ", uplo_char);
if (*(unsigned char *)uplo_char == ’L’)

uplo = Nag_Lower;
else if (*(unsigned char *)uplo_char == ’U’)

uplo = Nag_Upper;
else

{
Vprintf("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;

}
/* Read A and B from data file */
k1 = ka + 1;
k2 = kb + 1;
if (uplo == Nag_Upper)

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08usc

[NP3645/7] f08usc.5

{
for (i = 1; i <= n; ++i)

{
for (j = i; j <= MIN(i+ka,n); ++j)

{
Vscanf(" (%lf , %lf) ", &AB_UPPER(i,j).re,

&AB_UPPER(i,j).im);
}

}
Vscanf("%*[^\n] ");

}
else

{
for (i = 1; i <= n; ++i)

{
for (j = MAX(1,i-ka); j <= i; ++j)

{
Vscanf(" (%lf , %lf) ", &AB_LOWER(i,j).re,

&AB_LOWER(i,j).im);
}

}
Vscanf("%*[^\n] ");

}
if (uplo == Nag_Upper)

{
for (i = 1; i <= n; ++i)

{
for (j = i; j <= MIN(i+kb,n); ++j)

{
Vscanf(" (%lf, %lf) ", &BB_UPPER(i,j).re,

&BB_UPPER(i,j).im);
}

}
Vscanf("%*[^\n] ");

}
else

{
for (i = 1; i <= n; ++i)

{
for (j = MAX(1,i-kb); j <= i; ++j)

{
Vscanf(" (%lf, %lf) ", &BB_LOWER(i,j).re,

&BB_LOWER(i,j).im);
}

}
Vscanf("%*[^\n] ");

}
/* Compute the split Cholesky factorization of B */
f08utc(order, uplo, n, kb, bb, pdbb, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08utc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Reduce the problem to standard form C*y = lambda*y, */
/* storing the result in A */
f08usc(order, Nag_DoNotForm, uplo, n, ka, kb, ab, pdab, bb, pdbb,

x, pdx, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08usc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Reduce C to tridiagonal form T = (Q**T)*C*Q */
f08hsc(order, Nag_DoNotForm, uplo, n, ka, ab, pdab, d, e,

x, pdx, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08hsc.\n%s\n", fail.message);

f08usc NAG C Library Manual

f08usc.6 [NP3645/7]

exit_status = 1;
goto END;

}
/* Calculate the eigenvalues of T (same as C) */
f08jfc(n, d, e, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08jfc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print eigenvalues */
Vprintf(" Eigenvalues\n");
for (i = 0; i < n; ++i)

Vprintf(" %8.4lf",d[i]);
Vprintf("\n");

END:
if (ab) NAG_FREE(ab);
if (bb) NAG_FREE(bb);
if (d) NAG_FREE(d);
if (e) NAG_FREE(e);
if (x) NAG_FREE(x);
return exit_status;

}

9.2 Program Data

f08usc Example Program Data
4 2 1 :Values of N, KA and KB
’L’ :Value of UPLO

(-1.13, 0.00)
(1.94, 2.10) (-1.91, 0.00)
(-1.40,-0.25) (-0.82, 0.89) (-1.87, 0.00)

(-0.67,-0.34) (-1.10, 0.16) (0.50, 0.00) :End of matrix A
(9.89, 0.00)
(1.08, 1.73) (1.69, 0.00)

(-0.04,-0.29) (2.65, 0.00)
(-0.33,-2.24) (2.17, 0.00) :End of matrix B

9.3 Program Results

f08usc Example Program Results

Eigenvalues
-6.6089 -2.0416 0.1603 1.7712

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08usc

[NP3645/7] f08usc.7 (last)

	f08usc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	vect
	uplo
	n
	ka
	kb
	ab
	pdab
	bb
	pdbb
	x
	pdx
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ENUM_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

