f08 — Least-squares and Eigenvalue Problems (LAPACK) fO8usc

NAG C Library Function Document
nag zhbgst (f08usc)

1 Purpose

nag_zhbgst (fO8usc) reduces a complex Hermitian-definite generalized eigenproblem Az = ABz to the
standard form Cy = Ay, where A and B are band matrices, A is a complex Hermitian matrix, and B has
been factorized by nag_zpbstf (fO8utc).

2 Specification

void nag_zhbgst (Nag_OrderType order, Nag_VectType vect, Nag_UploType uplo,
Integer n, Integer ka, Integer kb, Complex ab[], Integer pdab,
const Complex bb[], Integer pdbb, Complex x[], Integer pdx, NagError *fail)

3 Description

To reduce the complex Hermitian-definite generalized eigenproblem Az = ABz to the standard form
Cy = Ay, where A, B and C' are banded, this function must be preceded by a call to nag_zpbstf (fO8utc)

which computes the split Cholesky factorization of the positive-definite matrix B: B = SS. The split
Cholesky factorization, compared with the ordinary Cholesky factorization, allows the work to be
approximately halved.

This function overwrites A with C = X7 AX, where X = S_IQ and) is a unitary matrix chosen
(implicitly) to preserve the bandwidth of A. The function also has an option to allow the accumulation of
X, and then, if z is an eigenvector of C, Xz is an eigenvector of the original system.

4 References

Crawford C R (1973) Reduction of a band-symmetric generalized eigenvalue problem Comm. ACM 16
41-44

Kaufman L (1984) Banded eigenvalue solvers on vector machines ACM Trans. Math. Software 10 73-86

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: vect — Nag VectType Input
On entry: indicates whether X is to be returned as follows:
if vect = Nag DoNotForm, X is not returned;
if vect = Nag FormX, X is returned.

Constraint: vect = Nag_DoNotForm or Nag_FormX.

3: uplo — Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored as follows:

[NP3645/7] f08usc.1

fO8usc NAG C Library Manual

if uplo = Nag_Upper, the upper triangular part of A is stored;
if uplo = Nag_Lower, the lower triangular part of A is stored.

Constraint: uplo = Nag_Upper or Nag_Lower.

4: n — Integer Input
On entry: n, the order of the matrices A and B.

Constraint: n > 0.

5: ka — Integer Input

On entry: k4, the number of super-diagonals of the matrix A if uplo = Nag_Upper, or the number
of sub-diagonals if uplo = Nag_Lower.

Constraint. ka > 0.

6: kb — Integer Input

On entry: kg, the number of super-diagonals of the matrix B if uplo = Nag_Upper, or the number
of sub-diagonals if uplo = Nag_Lower.

Constraint: ka > kb > 0.

7: ab[dim] — Complex Input/Output
Note: the dimension, dim, of the array ab must be at least max(1, pdab x n).

On entry: the n by n Hermitian band matrix A. This is stored as a notional two-dimensional array
with row elements or column elements stored contiguously. The storage of elements a;; depends on
the order and uplo parameters as follows:

if order = Nag_ColMajor and uplo = Nag_Upper,
a;; is stored in ab[ky +i — j+ (j— 1) x pdab], for i = 1,...,n and
J=rt,...,min(n,i+ ky);

if order = Nag_ColMajor and uplo = Nag_Lower,
a;; is stored in ab[i — j+ (j — 1) x pdab], for i = 1,...,n and
j=max(1,i — ky),...,%

if order = Nag_RowMajor and uplo = Nag_Upper,
a;; is stored in ab[j —i + (i — 1) x pdab], for i = 1,...,n and
j=1t,...,min(n,i+ ky);

if order = Nag_RowMajor and uplo = Nag_Lower,
a;; is stored in ablky +j — i+ (i — 1) x pdab], for i =1,...,n and
j=max(1,i —ky),...,1.

On exit: the upper or lower triangle of A is overwritten by the corresponding upper or lower triangle
of C' as specified by uplo.
8: pdab — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array ab.

Constraint. pdab > ka + 1.

9: bb[dim] — const Complex Input
Note: the dimension, dim, of the array bb must be at least max(1, pdbb x n).

On entry: the banded split Cholesky factor of B as specified by uplo, n and kb and returned by
nag_zpbstf (fO8utc).

f08usc.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08usc

10:

11:

12:

13:

6

pdbb — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix in the array bb.

Constraint: pdbb > kb + 1.

x[dim] — Complex Output

Note: the dimension, dim, of the array x must be at least
max(1,pdx x n) when vect = Nag FormX;
1 when vect = Nag DoNotForm.

If order = Nag_ColMajor, the (7, j)th element of the matrix X is stored in x[(j — 1) x pdx + 4 — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix X is stored in x[(¢ — 1) x pdx + j — 1].

On exit: the n by n matrix X = S7'Q, if vect = Nag_FormX.

x is not referenced if vect = Nag_DoNotForm.

pdx — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array x.

Constraints:
if vect = Nag_FormX, pdx > max(1,n);
if vect = Nag_DoNotForm, pdx > 1.
fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, ka = (value).
Constraint: ka > 0.

On entry, pdab = (value).
Constraint: pdab > 0.

On entry, pdbb = (value).
Constraint: pdbb > 0.

On entry, pdx = (value).
Constraint: pdx > 0.

NE_INT 2

On entry, ka = (value), kb = (value).
Constraint: ka > kb > 0.

On entry, pdab = (value), ka = (value).
Constraint: pdab > ka + 1.

On entry, pdbb = (value), kb = (value).
Constraint: pdbb > kb + 1.

[NP3645/7] f08usc.3

f08usc NAG C Library Manual

NE_ENUM_INT 2

On entry, vect = (value), n = (value), pdx = (value).
Constraint: if vect = Nag_FormX, pdx > max(1,n);
if vect = Nag DoNotForm, pdx > 1.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

Forming the reduced matrix C' is a stable procedure. However it involves implicit multiplication by B~".
When the function is used as a step in the computation of eigenvalues and eigenvectors of the original
problem, there may be a significant loss of accuracy if B is ill-conditioned with respect to inversion.

8 Further Comments

The total number of real floating-point operations is approximately 20n’kp when

vect = Nag_DoNotForm, assuming n >> k4, kp; there are an additional 5n3(k3/kA) operations when
vect = Nag_FormX.

The real analogue of this function is nag_dsbgst (f08uec).

9 Example

To compute all the eigenvalues of Az = ABz, where

—1.13 4 0.00¢ 1.94 —2.10¢ —1.40+ 0.25¢ 0.00 + 0.00¢
1.944+2.10¢ —191+0.00: —0.82—-0.89: —0.674 0.34¢

A= —1.40—-0.25; —-0.82+0.89¢ —1.87-+0.00i —1.10—0.163
0.00 +0.00: —0.67 —0.347 —1.10+0.163 0.50 4 0.00:
and
9.89 4 0.00: 1.08 — 1.734 0.00 + 0.00¢ 0.00 4 0.00:¢
B 1.08 +1.731 1.69 +0.002 —0.04 + 0.297 0.00 4 0.00:

0.00 +0.00¢ —0.04 —0.29: 2.65+0.00: —0.3342.24¢
0.00 + 0.00¢ 0.004+0.00¢ —0.33 —2.24: 2.17 4 0.00¢

Here A is Hermitian, B is Hermitian positive-definite, and A and B are treated as band matrices. B must
first be factorized by nag_zpbstf (f08utc). The program calls nag zhbgst (f08usc) to reduce the problem to
the standard form C'y = Ay, then nag_ zhbtrd (f08hsc) to reduce C' to tridiagonal form, and nag_dsterf
(f08jfc) to compute the eigenvalues.

9.1 Program Text
/* nag_zhbgst (f08usc) Example Program.

* Copyright 2001 Numerical Algorithms Group.

* Mark 7, 2001.
*/

f08usc.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>

int main(void)

{

/* Scalars *x/

Integer i, j, k1, k2, ka, kb, n, pdab,
Integer exit_status=0;

NagError fail;
Nag_UploType
Nag_OrderType
/* Arrays */
char uplo_char[2];
Complex #*ab=0, *bb=0, *x=0;
double *d=0, #*e=0;

uplo;
order;

#ifdef NAG_COLUMN_MAJOR

pdbb, pdx, d_len, e_len;

k1 +1I-J-1]

ki+J-1I-1]

k2 + J -1 - 1]

#define AB_UPPER(I,J) ab[(J-1)*pdab +
#define AB_LOWER(I,J) ab[(J-1)#*pdab + I - J]
#define BB_UPPER(I,J) bb[(J-1)#*pdbb + k2 + I - J - 1]
#define BB_LOWER(I,J) bb[(J-1)*pdbb + I - J]
order = Nag_ColMajor;
#else
#define AB_UPPER(I,J) ab[(I-1)*pdab + J - I]
#define AB_LOWER(I,J) ab[(I-1)*pdab +
#define BB_UPPER(I,J) bb[(I-1)*pdbb + J - I]
#define BB_LOWER(I,J) bb[(I-1)*pdbb +
order = Nag_RowMajor;
#endif

INIT_FAIL(fail);

Vprintf ("f08usc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf ("s*x[“\n] ");

Vscanf ("%$1d%1d%1d%*["\n] ", &n, &ka, &kb);

pdab = ka + 1;
pdbb = kb + 1;
pdx = n;

d_len =
e_len = n-1;

/* Allocate memory */

if (!(ab = NAG_ALLOC(pdab * n, Complex))

NAG_ALLOC(d_len, double)) ||
NAG_ALLOC(e_len, double)) ||
= NAG_ALLOC(n * n, Complex)))

(bb
(d
(e
(x

Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

}

[
= NAG_ALLOC (pdbb * n, Complex)) ||

/* Read whether Upper or Lower part of A is stored */

Vscanf (" ' %l1s ’%*["\n] ", uplo_char);

if (*(unsigned char =*)uplo_char == 'L’)
uplo = Nag_Lower;

else if (*(unsigned char #*)uplo_char ==
uplo = Nag_Upper;

else
{
Vprintf ("Unrecognised character for
exit_status = -1;
goto END;

}
/* Read A and B from data file =*/
k1l = ka + 1;
k2 = kb + 1;
if (uplo == Nag_Upper)

[NP3645/7]

Nag_UploType type\n");

f08usc

fO8usc.5

f08usc

{
for (1 = 1; 1 <= n; ++1)
{
for (j = i; j <= MIN(i+ka,n); ++7j)
{
Vscanf (" (%1f , %1f) ", &AB_UPPER(i,j).re,
&AB_UPPER(1i,]j) .1im);
}
¥
Vscanf ("sx[*\n] ");
}
else
{
for (1 = 1; 1 <= n; ++1)
{
for (j = MAX(1l,i-ka); j <= 1i; ++3)
{
Vscanf (" (%1f , %1f) ", &AB_LOWER(i,j).re,
&AB_LOWER(i,]j) .im);
}
3
Vscanf ("sx[*\n] ");
}
if (uplo == Nag_Upper)
{
for (1 = 1; 1 <= n; ++1)
{
for (j = i; j <= MIN(i+kb,n); ++3)
{
Vscanf (" (%1f, %1f) ", &BB_UPPER(i,]j).re,
&BB_UPPER(1i,j).im);
}
¥
Vscanf ("s*[*\n] ");
}
else
{
for (i = 1; i <= n; ++1i)
{
for (j = MAX(1l,i-kb); J <= i; ++3)
{
Vscanf (" (%1f, %1f) ", &BB_LOWER(i,j).re,
&BB_LOWER(i,J) .1im) ;
}
¥
Vscanf ("sx["\n] ");
}

/* Compute the split Cholesky factorization of B *x/
fO8utc(order, uplo, n, kb, bb, pdbb, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO8utc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Reduce the problem to standard form C*y = lambda*y, */
/* storing the result in A */

NAG C Library Manual

fO08usc(order, Nag_DoNotForm, uplo, n, ka, kb, ab, pdab, bb, pdbb,

x, pdx, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO8usc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Reduce C to tridiagonal form T = (Q**T)*CxQ */
fO08hsc(order, Nag_DoNotForm, uplo, n, ka, ab, pdab, 4, e,
x, pdx, &fail);
if (fail.code != NE_NOERROR)
{

Vprintf ("Error from fO08hsc.\n%s\n", fail.message);

fO8usc.6

[NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

exit_status = 1;
goto END;
}
/* Calculate the eigenvalues of T
f08jfc(n, d, e, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf ("Error from f08jfc.\n%s\n",
exit_status = 1;
goto END;

3

/* Print eigenvalues */
Vprintf (" Eigenvalues\n");
for (i = 0; 1 < n; ++1)

Vprintf (" %8.41f",d[i]);
Vprintf ("\n") ;

END:
if (ab) NAG_FREE (ab);
if (bb) NAG_FREE (bb) ;
if (d) NAG_FREE (d);
if (e) NAG_FREE (e);
if (x) NAG_FREE (x);

return exit_status;

9.2 Program Data

fO08usc Example Program Data
4 2 1
ILI
(-1.13, 0.00)
(1.94, 2.10) (-
(-1.40,-0.25)

.91, 0.00)
.82, 0.89) (-1.87, 0.00)
.67,-0.34)

|
[@NeN

(9.89, 0.
(1.08, 1.

00)
73) (1.69, 0.00)
.04,-0.29) (2.65, 0.00)

(-0.33,-2.24)

9.3 Program Results

fO08usc Example Program Results

Eigenvalues

-6.6089 -2.0416 0.1603 1.7712

(same as C)

(

(

0.50,

2.17,

*/

0.00)

0.00)

fail.message) ;

:Values of N,
:Value of UPLO

:End of

:End of

f08usc

KA and KB

matrix A

matrix B

[NP3645/7]

f08usc.7 (last)

	f08usc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	vect
	uplo
	n
	ka
	kb
	ab
	pdab
	bb
	pdbb
	x
	pdx
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ENUM_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

